Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization

نویسندگان

  • Lena L. Hecht
  • Caroline Wagner
  • Katharina Landfester
  • Heike P. Schuchmann
چکیده

This article focuses on the adequate surfactant concentration regime in which MMA droplets are stabilized sufficiently against coalescence during high-pressure homogenization but still no diffusion processes from droplets to micelles take place in the polymerization. Monomer miniemulsions with different surfactant concentrations were prepared with different energy inputs. Emulsions result that depend either on the surfactant concentration or on the energy input of the homogenization process. For both cases, the occupancy of the interface is compared as a function of the droplet size. It is shown that the surfactant concentration needed for the stabilization of a specified interface area decreases with increasing droplet size. For the dependence of droplet size on the energy input, it is shown that more surfactant can be applied before emulsion polymerization starts, but the applicable surfactant concentration is lower than the cmc and also depends on droplet size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization

Phosphonate-functionalized polymer nanoparticles were synthesized by free-radical copolymerization of vinylphosphonic acid (VPA) with styrene or methyl methacrylate (MMA) using the miniemulsion technique. The influence of different parameters such as monomer and surfactant type, amount of vinylphosphonic acid on the average particle size, and size distribution was studied using dynamic light sc...

متن کامل

Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers

The miniemulsion technique is a particular case in the family of heterophase polymerizations, which allows the formation of functionalized polymers by polymerization or modification of polymers in stable nanodroplets. We present here an overview of the different polymer syntheses within the miniemulsion droplets as reported in the literature, and of the current trends in the field.

متن کامل

Synthesis of Polymeric Nanoparticles by Reversible Addition-fragmentation Chain Transfer (raft) Polymerization in Co2-induced Miniemulsion

Implementation of controlled/living radical polymerization in miniemulsion (typically with oil droplet diameter of 20-500 nm) for synthesis of well-defined, polymeric nanoparticles is of particular interest as miniemulsions possess the inherent advantage that ideally each monomer droplet is transformed into a polymer particles(Zetterlund et al., 2008). However, the high energy requirement for m...

متن کامل

Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives.

Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very ...

متن کامل

The Fabrication of Very Small Miniemulsion Latexes from N-Stearoylglutamate and Lauryl Methacrylate: Evidence for Droplet Budding

Miniemulsion polymerization is a new way to synthesize polymer nanoparticles in the size range of 40–500 nm with high morphological uniformity and chemical flexibility. Focusing on the very small particles, miniemulsion polymerization already steps into the range of microemulsion polymerization, however, with a minimum expense of surfactant which is up to a factor of 10 lower than in microemuls...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2011